A semantic approach for extracting domain taxonomies from text

نویسندگان

  • Kevin Meijer
  • Flavius Frasincar
  • Frederik Hogenboom
چکیده

In this paper we present a framework for the automatic building of a domain taxonomy from text corpora, called Automatic Taxonomy Construction from Text (ATCT). This framework comprises four steps. First, terms are extracted from a corpus of documents. From these extracted terms the ones that are most relevant for a specific domain are selected using a filtering approach in the second step. Third, the selected terms are disambiguated by means of a word sense disambiguation technique and concepts are generated. In the final step, the broader-narrower relations between concepts are determined using a subsumption technique that makes use of concept co-occurrences in text. For evaluation, we assess the performance of the ATCT framework using the semantic precision, semantic recall, and the taxonomic F-measure that take into account the concept semantics. The proposed framework is evaluated in the field of economics and management as well as the medical domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

Извлечение низкочастотных терминов из специализированных текстов (Extraction of Low-Frequent Terms from Domain-Specific Texts)

We examined a method for extracting the low frequency important single-word terms from domain specific text. Firstly, domain-relevant fragments were extracted from the text with the help of a dependency tree. Then the fragments were clustered and candidate terms were defined using the semantic classifier. The studies suggest that this approach allows extracting even terms with a single occurrence.

متن کامل

ارائه مدلی برای استخراج اطلاعات از مستندات متنی، مبتنی بر متن‌کاوی در حوزه یادگیری الکترونیکی

As computer networks become the backbones of science and economy, enormous quantities documents become available. So, for extracting useful information from textual data, text mining techniques have been used. Text Mining has become an important research area that discoveries unknown information, facts or new hypotheses by automatically extracting information from different written documents. T...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

A Short Survey on Taxonomy Learning from Text Corpora: Issues, Resources and Recent Advances

A taxonomy is a semantic hierarchy, consisting of concepts linked by is-a relations. While a large number of taxonomies have been constructed from human-compiled resources (e.g., Wikipedia), learning taxonomies from text corpora has received a growing interest and is essential for longtailed and domain-specific knowledge acquisition. In this paper, we overview recent advances on taxonomy constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Decision Support Systems

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2014